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The formalism of the distributed approximating functional for integrating the time-dependent
Schrédinger equation is extended to allow an analytic treatment of all Hamiltonians of quadratic order.
The resulting propagator matrix is highly banded in both position and momentum representations. For
certain choices of the parameters, the action of this matrix can be cast in the form of a Toeplitz operator.
We demonstrate that banded Toeplitz matrix-vector multiplication can be performed in significantly
fewer numerical operations than is required by conventional split-operator fast Fourier transform algo-
rithms. Numerical examples verify the efficiency of this approach in both storage and speed. Extensions
of the method to Monte Carlo path integration, and the implementation on massively parallel computer

architectures, are discussed.

PACS number(s): 02.70.—c¢

I. INTRODUCTION

The analysis and understanding of dynamical phenom-
ena remains one of the fundamental goals of physics;
thus, in recent years, considerable effort has been devoted
to solving realistic problems in quantum dynamics. By
and large the methods employed can be classified as ei-
ther time independent or time dependent (although hy-
brid methods do exist). Time-dependent approaches
necessitate finding representations of the quantum propa-
gator which are computationally efficient (in terms of
speed) and minimize storage requirements. In recent
years effort along these lines has been quite successful as,
for example, methods such as the discrete variable repre-
sentation (DVR) [1], which is also used for the time-
independent Schrédinger equation, and fast Fourier
transform (FFT) techniques [2] have been successfully ap-
plied to systems of a few degrees of freedom, e.g., reactive
atom-diatom scattering. Nonetheless, because of the
practical limitations (in terms of speed and/or storage re-
quirements) encountered in methods such as DVR, etc.,
there has been significant interest in exploring new direc-
tions, for example, starting from a semiclassical
viewpoint [3] or the properties of the Feynman [4] or
coherent state [5] path integrals, leading to new formal-
isms for describing quantum dynamical processes. Our
own work follows this second course as, in a recent series
of papers, we have developed an entirely new theoretical
formalism, that of the distributed approximating func-
tional (DAF) [6-17] which leads to a powerful and
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efficient algorithm for numerically integrating partial
differential equations.

Much of the effort expended in the search for new rep-
resentations of quantum dynamics has focused on “solv-
ing” the time-dependent Schrodinger equation which, un-
like the typical time-independent approaches, yields
dynamical information without requiring the solution of
a large algebraic system of equations. For scattering cal-
culations in the time domain the numerical efficiency of
the DAF method can be measured in terms of the num-
ber of floating point operations, which scales as N, the
number of grid points for dimension d =1. This high
efficiency is achieved by exploiting the fact that the DAF
free propagator Ag(x,x’;t) can be cast in a particularly
convenient form. That is, Ag(x,x';t) depends on x —x’
only; operators of such a functional form are called Toe-
plitz operators (in discrete terms, a matrix which is con-
stant along the diagonals, i.e., M,j =M,_ j ). For such an
operator, matrix-on-vector multiplication can be cast as a
convolution and can be performed via the fast Fourier
transform in an extremely efficient manner, a method we
term the “DAF convolution.” As previous work has
shown, this fortunate state of affairs holds for the DAF
free propagator in any frame moving with constant veloc-
ity v. (For v#0 we call this the traveling DAF, or
TDAF, while the special case v =0 we call the stationary
DAF or SDAF; hence the subscript on the propagator.)
Clearly, for the prototypical scattering calculation, which
naturally divides into regions of incoming wave, scatter-
ing region, and outgoing wave, constant velocity frames
form a logical starting point for describing the dynamics,
making the DAF-convolution algorithm the “method of
choice” in terms of speed and efficient storage. More-
over, the DAF should prove even more advantageous,
relative to FFT techniques, on massively parallel comput-
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er architectures because of the far lower interprocessor
communication required by the banded DAF propagator.
Studies in this regard are in progress [18] and should be
reported shortly.

However, for some classes of physical problems such
constant velocity frames bear little relation to the under-
lying physics of the problem, for example, the dynamics
of bound states or “near top of barrier” tunneling. For
these cases the dynamics in no way approximates a free
wave packet—although it is very similar to the evolution
of a packet subject to either a harmonic oscillator or par-
abolic barrier potential—and as a result the bandwidth
of the DAF free propagator must be larger and the time
step must be shorter, both reducing the speed of the DAF
algorithm and increasing the storage requirements. Al-
ternatively, one can build the localized dynamics (to
linear order) into the DAF propagator [15], thus explicit-
ly taking account of the local classical force. This
reduces the bandwidth of the DAF propagator and al-
lows for a longer time step, but because the operator is no
longer Toeplitz [A(x,x';2)7A(x —x';t)], each row of
the propagator matrix must be calculated and stored sep-
arately, and the DAF-convolution algorithm no longer
applies. Our studies have shown that using straight
banded matrix-on-vector multiplication for wave propa-
gation, the DAF approach is competitive with, but not
consistently superior to, split-operator FFT techniques;
[16,17] thus, a non-Toeplitz propagator matrix represents
a concession in both storage and speed.

Certainly there is nothing numerically special about
scattering problems, and given the extremely general na-
ture of the DAF as a means for integrating partial
differential equations, one would expect that suitable
modifications would allow the DAF formalism to handle
other physical problems with the efficiency and speed al-
ready demonstrated for scattering. Recent developments
in the DAF approach have convinced us this is indeed
the case, as the DAF propagator can take into account
the underlying dynamics on a gross scale. Thus the
efficiencies of the DAF propagator can be extended
beyond what has been considered to this point and this
paper is the first in a short series detailing some of these
extensions.

We begin by considering the prototypical physical
cases mentioned above, i.e., bound states and ‘“shallow”
tunneling. As noted, the wave packet dynamics for such
systems is similar (for sufficiently short time scales) to
that of a harmonic oscillator or parabolic barrier poten-
tial, respectively. Thus a useful approximation in these
cases is to model the system with a suitable quadratic po-
tential, and to treat the dynamics of that potential exact-
ly. This paper shows that the DAF propagator can be
generalized to include analytically the dynamics of such
quadratic potentials, leaving only the nonquadratic terms
to be handled numerically. Treating a more representa-
tive version of the dynamics exactly allows for longer
time steps in the numerical integration and can also lower
the bandwidth of the DAF propagator. Moreover, this
extension can be accomplished in a way which still yields
a Toeplitz DAF propagator matrix—more exactly, the
propagation of a wave packet can be reduced to a set of
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Toeplitz matrix-on-vector multiplications—with all of
the associated numerical efficiencies in both speed and
storage. Thus, this generalized DAF formalism provides
a scheme for integrating the time-dependent Schrédinger
equation in a fashion that (i) includes the dynamics exact-
ly up to a global quadratic approximation; (ii) is faster
than split operator FFT methods; and (iii) has lower
storage and communication requirements.

In addition, although only the simple case of a global
quadratic potential is considered here, the nature of our
derivation demonstrates it will be possible to find DAF
propagators analytically for a much wider class of situa-
tions, e.g., the semiclassical evolution of the wave packet.
Indeed, it becomes clear that the DAF representation of
virtually any transformation mapping one Gaussian wave
packet into another—a set of transformations called the
metaplectic group [19]—can be calculated analytically.
Other useful transformations from this group are planned
to be developed in the succeeding papers of this series
[20,21].

The development proceeds as follows: Sec. II rederives
the DAF formalism in a manner which makes the exten-
sions to quadratic Hamiltonians straightforward. This
calculation is carried out explicitly for the useful case of a
Hamiltonian of the form A =p?/2m +mw*x?/2 (where
®? can be positive, negative, or zero), thus deriving the
“harmonic DAF” propagator (HDAF). The results can
be cast in two separate, but related, forms, the “progres-
sion” HDAF and the “regression” HDAF. (The reason
for these names will be clear from the derivation.) Sec-
tion III examines the specific case of a Toeplitz DAF
propagator, develops the DAF-convolution algorithm,
and demonstrates it will in general be numerically more
efficient than conventional split-operator FFT techniques.
Although neither the progression nor the regression form
of the harmonic DAF propagator is Toeplitz in and of it-
self, we show that use of the progression and regression
propagators in a specific combination does yield an algo-
rithm for wave packet propagation in which all opera-
tions are Toeplitz matrix-on-vector multiplies. Thus the
harmonic DAF retains the full numerical efficiencies of
the DAF convolution approach, even while building in
the global quadratic dynamics analytically. We illustrate
these points in Sec. IV with the well known example of a
wave packet propagating in a Morse potential. Section V
concludes with a discussion of results and an overview of
work in progress.

II. THE HARMONIC DAF

The DAF arose from a “first principles” effort to
create a set of local—in the sense of being confined to a
narrow range of coordinate space— ‘““fitting functions”
[6] which could be evolved exactly in time under the free
particle propagator. Such a set of functions provides a
useful means of approximating solutions to partial
differential equations, and in particular, the L? integrable
wave packets commonly encountered in quantum
mechanics. As our previous work has shown, the DAF
satisfies these fundamental goals as the wave packet can
be expressed using the fitting functions and the time evo-
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lution can be found in a straightforward manner for any
system with a coordinate based potential. Because the
fitting functions are localized, the DAF representation of
the propagator is banded, allowing the time evolution to
be calculated in a numerically efficient fashion.

The DAF representation arises from the replacement
of the Dirac delta function §(x) by an approximation par-
ticularly suited to the purpose at hand, i.e., the integra-
tion of an initial value problem. Thus we replace

fo= [ 8(x —x")f (x")dx’ (1)
with the relation
o= [ 86e,x"pu)f (xdx” 2)

where 8(x,x’;u) is a conveniently chosen (from countless
possibilities) approximate representation of the Dirac §
function, and p denotes the set of parameters used in this
approximation. For the propagation of quantum wave
functions and/or the calculation of quantum mechanical
path integrals a similar approximation can be made to
the free particle propagator

(x|e= P AmA|yy =g ~07/2mh [ 5(x —x)\W(x')dx’
zf [e—iﬁzt/Zmﬁa(x’xl;’u)]

XW(x')dx'" . (3)

For calculating the approximate representation of the
free particle propagator a particularly convenient ap-
proximation to the 8 function is in terms of Hermite po-
lynomials, which represent 8(x,x'; ) by
M/2 5
8(x,x;M,0)=3 b,H,,(we " , 4)
n=0

where w=(x —x')/V 20?, o is a parameter with dimen-
sions of length that determines the “width” of the DAF
in coordinate space [6,10], H; is the jth Hermite polyno-
mial, and

1
nV 27l ’

It should be noted that the DAF can have several other
parameters, such as a mean momentum or, as shown
below, a characteristic frequency; but, for notational
brevity, we will display only u unless the full parameter
set is explicitly needed. In the same spirit of simplicity
we utilize a one dimensional notation throughout; gen-
eralizations to a higher number of Cartesian coordinates
are straightforward (e.g., the DAF propagator matrix is
just a direct product) and the generalization to non-
Cartesian coordinates has been treategl elsewhere [7]. Fi-
nally, the product h,(w)=H,(w)e ™" will be termed the
nth Hermite function.

The great advantage of the DAF approximation to
6(x) can be seen by writing the nth Hermite function in
terms of a generating function, viz.,

2n
Hz,,(w)e_"’2= d‘;ue_wz , (6)

(5)
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making it clear that the free particle Hamiltonian, and
hence propagator, commutes with the generation of the
Hermite function. Morgover, the action of the free parti-
cle propagator on e ~*" can be found analytically since
this function is itself just the wave function for a Gauss-
ian wave packet.

The Hermite polynomials have several other generat-
ing function expressions, and one which proves useful for
calculating more general DAF propagators is

n
H,y(w)= -2 ¢ 2+ 2r0 )
dA"

A=0

so that the nth Hermite function is then given by
d" A2 424w —w?

h (w)=——e
dA"

(8

A=0

The propagator e ~“A/% will always be A independent,
and thus commutes with both the differentiation and the

limit, i.e.,

e fif?z/ﬁh (w)=e —ift/#
n

n
d e~l2+21w-wz
dA”

A=0

_ 4" | i, -+ 20w —w?

= e e P 9)
drr A=0

— A2 20w —w

The quantity e * can be regarded as a Gaussian
wave packet (coherent state wave function) for which
propagation under any Hamiltonian with a quadratic po-
tential can be found analytically. In addition, any such
propagator transforms a Gaussian wave packet into
another Gaussian packet (generally of different width and
centered at a different point in phase space) so after the
propagator has acted the A differentiation will still take
place on a Gaussian form. Thus the resulting time-
propagated DAF can again be written entirely in terms of
Hermite polynomials and Gaussian exponentials. Indeed,
the derivation leading up to Eq. (9) shows that the func-
tional representation of the DAF in terms of Gaussian
exponents and Hermite polynomials is invarient under al-
most any transformation taking one Gaussian wave func-
tion into another one, such as, for example, translations,
dilations, or “boosts” of the form W(x)—e ~P*/A¥(x).
The set of all transformations taking one Gaussian wave
packet into another is called the metaplectic group [19]
and the DAF representation of the group elements can be
found straightforwardly provided, of course, the transfor-
mation does not depend on A.

To illustrate the advantages of this generalization to
the DAF formalism we explicitly calculate the HDAF
propagator Ag(x,x’;t) for a DAF boosted to mean
momentum p,=#ik (where k is taken to be a constant) in
a quadratic potential, i.e., we examine

(x|e~iﬁz/ﬁ|\l,>=e—iﬁ:/ﬁ f etk x—xg(x —x")

XW¥(x")dx'
=f [e—iﬁt/ﬁeik(x—x’)a(x —x")]
XW(x")dx', (10)
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”2 2
where = £L+_m2a’ 372 (13)
A=2 ymoty (11) i
2m 2 and p’'~d/0x’. Although this interchange makes no for-

and w? can be positive, negative, or zero. However, be-
cause the evolution operator acts on a function contain-
ing 8(x —x') we are now permitted to make the Hamil-
tonian instead an operator acting on x’, i.e.,

e—-iﬁt/ﬁeik(x —x8(x _x')=e—iﬁ't/ﬁeik(x —x§(x —x') ,
(12)

where
J

mal difference in Eq. (10) it does lead to a different form
for the DAF propagator once we approximate the 6 func-
tion. Thus there are two different (but equally correct)
forms for the HDAF propagator, and for reasons which
will be apparent below we call the form using A the pro-
gression HDAF and the form using A’ the regression
HDAF and denote them by AZ(x,x';t) and Af,(x,x';t),
respectively.

Taking just the progression form for the moment, we
have

e *iﬁt/ﬁeik(x —X')a(x —x')zA};I(x,x';t)=e —iﬁt/ﬁeik(x —x')a(x —x’;M)

n
_d o — Bt /Ay ik (x —x") p —A+ 20w —w?

T dAr

(14)

A=0 "

The calculation can be made a little more straightforward by remembering a few basic facts about coherent state wave-
functions; that is, consider the coherent state |z ) defined by the property that

alz)=|z)z,
where
and
,=_1 |4 io
V2 |o #

(15)

(16)

For such a state the coordinate space wave function is given (up to an overall phase) by

1/4

1
3 exp

mo

- =gl i
(x|z) 2 +ﬁp(x q)

(17)

Once again, the parameter ¢ has dimensions of length, and is a measure of the coordinate space uncertainty of the wave
packet. As noted above, for a general quadratic Hamiltonian of the form of Eq. (11), the action of the propagator on
the coherent state wave function can be calculated analytically and is given by

'I?t/ﬁ( z) i _0222 1 a
e ! x|z)= ex +—

mo*D? P 242 D,
where

_ i .

D, =cos(wt)+ ———sin(wt)
ocme

and

;2
D, =cos(wt)+ %sin(mt) .

i
w ot

2 2
D,x

202

cos(wt )+ = p

7 [P0

l , (18)

(19)

(20)

Note that Eq. (18) is valid for w? positive, negative, or zero. Comparing Egs. (14) and (17) and recognizing that we will,

in general, want w =(x —x')/V20, we see that e

—w?+2Aw

corresponds (up to an overall constant) to the wave function
of a coherent state of width o centered in position at ¢ =x' and in momentum at p =#k +

V2#ir/io.

Making use of these identifications in Eq. (18) and applying some algebra the propagation of individual Hermite func-

tions can be written as
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i d" 2 1 cos(wt ) " 2
e "HI Mg ikix =Xy (1) == e MTMEGY = @ oS/, =Ly
n PdA,,[ Ia= VD, D, | e n(5)
n/2
_ 1 cos(wt) iAS /i
= e h (g) » 21
\/ 1 Dl "

where p is independent of A, and the dummy variable A
has been scaled by

1/2

A=A cos(wt)
D, (22)
so that
d" _ | costwr) |"* d 03
dA" D, da"

The final line of Eq. (21) demonstrates the invariance of
the DAF propagator alluded to above, i.e., the HDAF
propagator can be written entirely (up to overall con-
stants) in terms of Hermite functions. Moreover, this
same line shows the strong connection between the quan-
tal DAF propagator and the underlying classical dynam-
ics, for

AS= Polx —x'cos(wt)—(py/mo)sin(wt )]

cos(wt)

+L(pg,x )_____tan(a)t)

) (24)
where p, =#k and the quantity L is the classical Lagrang-
ian [written in first order form, that is, as a function of
(g,p) rather than (q,§)] corresponding to the same har-
monic potential,

2

2
L(p,q)=*2%— "’2“’ q°. (25)

For sufficiently short time cos(wt)=1 and tan(wt)/w~=t,
so AS is the change in the classical action for a particle
moving in a quadratic potential from x to x’. Similarly,
is given by

_ x—x'cos(wt)—(py/mo)sin(wt)

E= - ) (26)
\/202chos(a)t )

Utilizing all of these factors, the progression HDAF
propagator is given by

Alb(x,x';t).—_e—iﬁz/ﬁeik(xAx')S(x’x,;#)
ias/h 2
=¢iaS/ zanz,,(é‘)e_g

n=0

(27

with

n n

N S
" \/27702D, n!

Similarly, returning to Eq. (14) and carrying out all of
the subsequent steps for the regression form of the propa-
gator yields the same results provided the exchanges
x——x', x'—>—x, and p— —p are made. Thus the re-

cos(wt)
D,

c (28)

_1
4

gression HDAF propagator is given by

Aﬁ,(x,x';t)=€‘iglt/ﬁeik(x_xljﬁ(x,x';;t)

s M2 o

=e85/A S ¢, Hy, (e ¢, (29)
n=0

where ¢, is the same as in the progression version, and

now

x cos(wt)—x'—(py/mo)sin(wt)
&= , (30

V20D, cos(wt)

and
s(wt)—x'—(po/mo)sin(wt)
AS,zpo[xco wt)—x'—(py/mo)sin(wt)]
cos(wt)

tan(wt) 31)

+L(pg,x")

The origin of the terms progression and regression

should now be clear, for in both cases the argument of

the Hermite functions, and hence the maximum ampli-

tude (approximately) of the time-propagated DAF, fol-

lows the classical path of a particle propagating in a har-
monic oscillator of frequency o, '

q(t)=q0cos(a)t)+p—osin(wt) (32)
maw

(again this formula is valid for all values of @) but in the

former case the argument travels forward in time

(progresses) from the phase space point x’,p, while in the

latter case it travels backwards in time (regresses) from

the point x,pg.

Equations (27) and (29) each provide a “basis” in which
each element obeys the underlying global quadratic dy-
namics exactly. Thus, for w*> 0, either form of the DAF
evolves as a periodic function of time with frequency .
The regression form of the propagator is generally superi-
or to the progression form for numerical purposes (in the
case of matrix-on-vector multiplication), and this is par-
ticularly true for the two forms of the HDAF; as a rule
the progression form of the propagator is far less banded
than the regression form. We defer further comparison
of the progression and regression propagators to the
succeeding paper (in which the DAF propagator is gen-
eralized to include the local quadratic part of the poten-
tial) where it will prove more relevant.

The most important physical parameter in the evolu-
tion of the HDAF is the ratio of the “DAF width” o to
the frequency of the harmonic potential » (and thus to
the “natural width” of the potential). Figure 1 depicts an
example of a DAF propagating under the effect of a
quadratic Hamiltonian (in regression form) for the ratio
o /o equal to 1. In all cases where »?>0 the regression
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FIG. 1. Time series for the evolution of a DAF under a har-
monic oscillator potential (the HDAF propagator) for half a
period, in regression form. Here all dimensional parameters
(0,0,fi,m) are set to 1, and the time is in increments of 7/5.
The DAF is initially centered at x’=3 and the real part (which
is identically zero at ¢t =) and absolute value are displayed.

HDAF stays localized (indeed, more localized than under
the free particle propagator), indicating that the HDAF
propagator is banded, and is periodic in time with fre-
quency . For w?<0, i.e., the parabolic barrier, the pro-
pagated DAF is less localized than under the free particle
|

—iV, R /2h —iR t/h —iV,(2)t/2%
I e 0''", 1

e B/PY(x)~e W(x)

—iV (x)t /2% =iV (x")t /2%

~e f Ay(x,x';t)e

which has errors of O(€?) as opposed to the O(€?) ones of
Eq. (33). Alternatively, one can make use of other forms
of operator splitting, such as the modified Cayley ap-
proach [22].

ITII. THE EFFICIENCIES
OF THE DAF-CONVOLUTION APPROACH

In two recent calculations of time-dependent scattering
amplitudes [16,17] we have demonstrated that the DAF
approach can be both faster (in terms of CPU time) and
have lower storage requirements than conventional split-
operator FFT methods. These results made use of a
specific algorithm, termed the DAF convolution, the
efficiencies of which hinged upon the fact that the
discrete SDAF or TDAF propagator matrix is a Toeplitz
operator, and thus the matrix-vector product involved in
propagating the wave packet can be computed via a con-
volution. This section develops the theoretical underpin-
nings of the DAF-convolution algorithm and shows it
will in general be numerically more efficient than split-
operator FFT methods. Although the HDAF propaga-

Y(x')dx',
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propagator, but this is simply a reflection of the underly-
ing physics, and by treating this spreading analytically we
expect the regression HDAF propagator will allow for a
longer time step or increased accuracy (or both) to a de-
gree sufficient to make up for the wider bandwidth.

Finally, note that either form of the HDAF propagator
represents an extension of much of the DAF formalism
presented in earlier works, for taking the appropriate lim-
its on the parameters k and w in Eq. (27) or (29) yields the
propagators for the SDAF and TDAF (Ag and Ay, re-
spectively). Thus the actions of a general short time
propagator (with coordinate based potential) on a wave
packet W(x) can be written

—iV,(R)t/h —ift/%
I e Q

e /Ay (x) e W(x)

me T [ Ag(xx0W(x"dx"

(33)
where ﬁQ is the Hamiltonian up to quadratic terms,
V;(X) is the “remainder,”

vi(2)=A-8,, (34)
and Ay is the DAF representation of the exact propaga-
tor [thus the second line in Eq. (33) represents an addi-
tional level of approximation since the DAF cannot ex-
actly reproduce any L? integrable wave packet]. Note

that because the DAF provides a coordinate space repre-
. —iV, (Rt /%
sentation the operator e Yi leads only to a scalar

multiplication, as the notation of the last line of Eq. (33)
indicates. For somewhat greater accuracy, a symmetric
Trotter splitting can be used instead of that in Eq. (33),
yielding

(35)

[

tor cannot be cast entirely in Toeplitz form, it is possible
to evolve wave functions under the HDAF via a set of
Toeplitz operators, thus maintaining the significant ad-
vantages in speed and storage of the Toeplitz operator
structure.

For the purpose at hand it is sufficient to consider the
simplest form of DAF propagator which is Toeplitz;
thus, consider the action of the SDAF propagator
Ag(x,x';7) on a one dimensional wave packet propaga-
ting freely for time 7

¢r(x;t+1')=f Ag(x,x";sT)p(x";t)dx’' ,

where the SDAF propagator is given by taking k =0 =0
in Eq. (27) or (29)

A ) M/zb o nt+l x —x
’ ’;t = 7 n|l - ——
stex50= 2 b |5 > | V20 2)
(x —x')?
Xexp —Tz(t) ) (36)
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which is  explicitly Toeplitz [i.e, Ag(x,x’;t)
=Ag(x —x';¢)]. The discrete representation of Ag will
be banded, and we take the bandwidth to be 2w +1. As-
sume, for ease of exposition, that there are n =km grid
points, with m 2 w. Write Ag as

A B 0 - 0
B” A B :

Ag=1]0 BT A 0|, 37
0 0 . B
0 0 --- BT A

where now A is a dense (i.e., not banded) m Xm sym-
metric Toeplitz matrix, B is Toeplitz, lower triangular
and m X m, and BT is the transpose of B.

If we partition i conformably we have

AY,+By,

BT+ Ay, +By,
Asy= : (38)
BTy, + Ay,

The banded Toeplitz matrix-vector product is thus re-
duced to a set of 3k —2 smaller Toeplitz matrix-vector
products. Each of the products Ay;, By;, or BTy ; times
¥ can be computed in O(m log,m ) flops, accomplished
via a fast fourier transform, which need be applied to A
and B only once for the entire propagation sequence.

To see how this works, notice that the FFT can be
viewed simply as a fast method for computing the convo-
lution of two vectors. The convolution of the (discrete, n
periodic) vectors is the vector quantity z =xoy, defined
by z, =2}'=—01x Vi —; (this product can represent, e.g., the
product of two polynomials). The convolution of x and y
can also be written as the matrix-vector product z =Xy,
where X is the circulant, or convolution, matrix (written
here as a set of column vectors)

X=[x,Ss,8*,...,8" x],

and S is the downshift matrix (again, as a set of column
vectors)

S=[e)es,...,€,,€]

with e; equal to the jth column of the n Xn identity ma-
trix (see, e.g., [23]).

Now the discrete Fourier matrix F diagonalizes every
circulant matrix, and thus xoy =Xy =FDF ™!y can be
computed (by an FFT) in O(n log,n ) operations. The ap-

|
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plication of this theory to the action of a finite Toeplitz
matrix is achieved by noticing that a Toeplitz matrix of
order m can always be embedded in a circulant matrix of
order M, with M 22m —1. Thus, for example, we can
choose P, Q, and R such that the M X M matrix

AP
is circulant. Then by taking the product
o-13]
~ Y
ol =lar ]

the desired quantity ( Ay) can be easily extracted. Sim-
ple algebra shows that using this method, the action of a
Toeplitz matrix of order n with bandwidth 2w +1 can be
calculated in O(n log,w) flops.

Comparison with Egs. (26) and (30) shows that neither
the progression nor the regression form of the HDAF
propagator is Toeplitz; however, each can be written as
the product of a scalar operator with an operator that is
“almost Toeplitz,” i.e., operators with arguments going
like x —x’cos(wt) and x cos(wt)—x’, respectively. That
is, the progression HDAF propagator can be written

|

: 2
AL (x,x';t)=exp — L MOX on(wt)
A2
X F(x —x'cos(wt);p,t) (41)
and similarly for the regression version
. 12
AR(x,x";t)=exp —é MOX_ tan(wt)
XF(x'—xcos(wt );p,t) , (42)

with the function F given by

. 2 |
. _ s py _ p-tan(wt)
Flyip,t)=exp # | cos(wt) 2mo
M/2 _ ;
XS cyhyn y (pz/mco)sm(a)t) @3)
n=0 20' chos((ﬂt)

By using the progression and regression forms in com-
bination the HDAF propagator can be reduced to a set of
Toeplitz matrix-on-vector and scalar update operations.
To wit: consider the coordinate space representation of
the evolution operator

(xle_iﬁ’/ﬁlx’)= f (xIeﬂﬁx/zﬂxu)(x"|e—iﬁr/2ﬁ|x.>dx”

P f AR(x,x";t/2)e

=iV (x")t /2% —iV (x")t/2%
e

Af,(x”,x’;t/Z)dx”

=fF(x"—x cos(wt))F(x" —x'cos(wt ))T(x")dx"" , (44)

where x'' represents an intermediate coordinate eigenstate and
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a bx
j a=—+e °,
T(x")=exp —%[2tV,(x”)+mwx2tan(wt)] . E
__Po_ bx,
From Egs. (41) and (42), the change of variable B V2E e
x""=y cos(wt) (45) =_24a
Y E’

makes both factors of F in the last line of Eq. (44) Toe-
plitz, and since I is a scalar function, the HDAF propa-
gator for two time steps has been reduced entirely to Toe-
plitz operations.

After the above change of variables the discrete form
of Eq. (44) can be interpreted as mapping the wave packet
between two grids, the first taking the packet from the
regular coordinate state grid on which the DAFs are
placed to a second intermediate grid scaled by cos(wt).
The second time step then maps the packet back onto the
“physical” grid. Clearly, the change of variables in Eq.
(45) will affect the numerical stability of the HDAF prop-
agation and thus its efficiency compared with other
methods, particularly as ot —(j +1/2)7 where the trans-
formation becomes noninvertible. Since this series of pa-
pers are basically ‘“developmental” in nature, we limit
ourselves for the moment to demonstrating that the Toe-
plitz HDAF propagator accurately integrates the time-
dependent Schrodinger equation, deferring a detailed nu-
merical investigation of the HDAF and its efficiencies to
the treatment of a suitably apropos application.

IV. A SIMPLE NUMERICAL EXAMPLE

In the succeeding papers of the series it will prove con-
venient to have a common model problem for which
some reasonable portion of the dynamics can be ex-
pressed analytically; the Morse oscillator is one of the few
anharmonic systems for which this is possible, and thus
we digress briefly and examine it in detail.

The Morse potential takes the form

Vix)=a[(1—e %*)*—1], (46)

and we note several features of this potential: (i) the
minimum lies at —a; (ii) the zeros of the potential occur
at x =In2"% and as x — oo; (iii) there is an exponentially
growing hard wall for negative x; and (iv) the well “opens
up” much faster than the harmonic oscillator potential
found by taking a Taylor expansion around the
minimum, so the period will in general be much longer
than the period for that oscillator, and becomes infinite as
E—0.

As noted above, an analytic solution can be found for a
classical particle moving in this potential. Consider the
case in which the classical particle starts at the phase
point x(,p, and has energy

pb —b:
E=="+a[(1—e foyr—1],

i.e., the mass m has been set to 1. Define the three auxili-
ary quantities

as well as the quantities
A(t)=acosh(vt)+Bsinh(vt)+y ,

1dA4()

v dt

Then one can easily show (for example, by substituting
into Newton’s second law) that

47)
B(t)=asinh(vt)+Bcosh(vt)=

x(t)=%lnA (1), (48)
~— B(t)
—v
p(=VIE 5, (49)
where
v=bV2E (50)

gives the classical frequency of the oscillation. Note that
if E <0 then v—iw where o=bV —2E. In that case

iPo bx,,
——e

so that A (t), and hence x (¢) stays real. Note also that

lim x(¢)= %ln(a+y)= %lnebxo

=X
t—0 0

as expected. Thus the classical frequency of such a
Morse oscillator is @=bV —2E and, for example, this
frequency can be built in to the HDAF dynamics analyti-
cally.

For a specific numerical example we take @ =10.25 and
b=0.2209 in the potential of Eq. (46) and propagate a
wave packet of unit width (o =0) initially located on the
soft wall of the potential, corresponding to a coherent
state centered at the phase space point p=0, ¢=5.0.
With this choice of parameters the initial “energy” of the
packet—determined by using the expectation values of
the position and momentum in the classical
Hamiltonian—is E;=—5.67 and the corresponding
classical frequency, obtained from Eq. (50), is ©,. =0.744.

Figure 2 shows the phase space trajectory of the center
of the wave packet—which is the trajectory of the corre-
sponding classical system—as well as the initial
configuration. Figure 3 shows the “survival probability”
P(1)=|C(2)|* where C(t) is the quantum autocorrelation
function

C()=(Wole A4y, ) (51)

calculated using the HDAF propagator of Eq. (44) with
®=a,. Although, as noted above, we defer an in-depth
examination of the numerical properties of the HDAF
until treating a “real world” problem, is it noteworthy
that the accuracy of the results is not extremely sensitive
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to the value taken for w. That is, while “building in” the
underlying bound state dynamics aids in the wave packet
propagation, accurate results can still be obtained —
usually at the cost of a shorter time step—by utilizing a
frequency other than the classical one.

(a)

(b)

-6

-8

-2 0 2 4 6 8

FIG. 2. Some of the salient features of the simple numerical
example presented in this section: (a) The classical phase space
trajectory (the trajectory followed, to first order in #, by the
center of the wave packet) corresponding to the Morse potential
with the given parameters. (b) The initial configuration of the
system, with the Gaussian wave packet centered at g,=5 and
having no initial momentum. The packet is shifted vertically to
reflect the classical energy of E= —5.67.
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FIG. 3. The survival probability P(t) for the Gaussian pack-
et evolving in the Morse potential. The exact results (solid line)
were obtained via a converged SDAF calculations (itself
checked with a split operator FFT algorithm) while the discrete
points were calculated using the progression and regression
HDAF propagators in the fashion described in Sec. 1V, i.e,
wave packet propagation is reduced to a set of Toeplitz matrix-
on-vector operations which, via the DAF convolution, means
the total work scales as O(N). The frequency of the harmonic
potential in the HDAF propagators was set to the frequency of
a particle of the given energy in the corresponding classical
Morse oscillator.

V. CONCLUSIONS

This paper has extended the power of the DAF formal-
ism in several ways.

(1) We have explicitly proven a fact recently demon-
strated numerically [16,17], i.e., that the DAF-
convolution formalism is computationally more efficient
than split-operator FFT methods, requiring fewer float-
ing point operations for a given problem. The DAF for-
malism also has lower storage requirements and, when
implemented on massively parallel computers, lower
communication costs. All of the above comparisons as-
sume the same number of grid points per degree of free-
dom for the DAF and the split-operator FFT algorithm;
our experience shows the DAF generally requires fewer
grid points than the FFT, providing the DAF with even
greater relative efficiency. In fact, recent results indicate
it may be possible to utilize the DAF with far fewer grid
points than required by FFT based algorithms. This
would prove crucial in the simulation of quantum sys-
tems with many degrees of freedom, not just because of
the increased speed of the algorithm, but also because of
the tremendous reduction in storage requirements for the
multidimensional wave function.

(2) We have demonstrated the DAF propagator for-
malism can include analytically the effects of the Hamil-
tonian through the quadratic terms in the potential.

(3) The major efficiencies in terms of speed of the
DAF-convolution algorithm are maintained, as are the
lower communication costs and storage requirements,
provided the wave packet is propagated on a uniform grid
and the quadratic approximation to the Hamiltonian is
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taken to be global.

(4) From the derivation leading to the HDAF propaga-
tor, in particular Eq. (9), analytic DAF propagators can
be found for an extremely wide range of transformations,
including those of the metaplectic group.

As the derivation of the HDAF makes clear, DAFs in
many ways play a role akin to a set of basis functions, for
they provide a means of representing functions and
operators. Indeed, DAFs constitute a localized,
nonorthogonal, basis. However, it must be stressed that
we never use the DAF as a basis set in the conventional
sense; i.e., we never write

[¥)=3a,l¢,) .

where
4, =3 Spm (6 |9)

and S,,,=(¢,,14,) is the “overlap matrix” of the basis
vectors. Instead, we utilize the DAF as a set of linear
functionals mapping between two different, approximate,
representations of the wave packet. For these reasons we
refer to the entire DAF method for propagating wave
packets as a ‘“non-basis-set approach” to quantum
mechanics.

Thus, through DAFs one achieves perhaps the nicest
aspects of a coherent state representation, i.e., locality
and analytic evolution under a class of Hamiltonians,
without having to deal with the technical and numerical
difficulties present with coherent states, such as phase
space representations of operators or diagonalization of
the (pseudosingular) overlap matrix corresponding to an
overcomplete nonorthogonal basis. (By pseudosingular
we mean a matrix which for any finite size cannot formal-
ly have a zero eigenvalue, but some subset of the eigen-
values will be extremely—in the case of coherent states,
exponentially—small and the matrix is singular in the
N — o limit.) As the derivation of the HDAF propaga-
tor made clear, there are strong similarities between
DAFs and coherent states, and in many ways we regard
the DAFs as a basis of “dressed” coherent states (usually
of a single momentum) but we stress again, the DAF is
not a type of coherent state (nor is it a wavelet). In the
near future we will present a direct comparison between
DAFs and basis set expansions demonstrating, in fact,
that basis set expansions are a subset of DAFs [24].

These results leave us convinced that the DAF ap-
proach holds significant promise for resolving the quan-
tum dynamics problem, for the DAF provides all the ad-
vantages of a localized basis set, but are far more “flexi-
ble” than the conventional methods of quantum dynam-
ics, allowing (as the current paper has shown) exact treat-
ment of a wide range of transformations, or, for example,
nonuniformity of the coordinate space grid or position
dependence of the relevant parameters.

Nonetheless, the efficiencies of the DAF-convolution
algorithm are obtained at the cost of using a uniform grid
in each of the coordinates. Throughout the development
of the DAF formalism we have striven to take the “long
view” regarding the quantum dynamics problem; that is,
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we seek a general method for simulating the dynamics of
arbitrary—within the limitation that thus far we have
considered only the local potentials commonly encoun-
tered in chemical physics—quantum systems of several
degrees of freedom, where ‘““several” means any dimen-
sion such that statistical averaging does not yield a
sufficiently good approximation to simplify the problem.
Thus, although the extension of the DAF-convolution
approach to include the exact global quadratic dynamics
greatly widens the class of problems which can be treated
in an efficient manner—indeed, we believe this approach
brings an entirely new class of problems within computa-
tional reach—it does not, in and of itself, resolve our
long range goals. There are two principal reasons for this
statement: First, for many interesting physical problems,
e.g., systems with multiple minima, a global quadratic ap-
proximation is of limited use as the convexity of the po-
tential does not even approach being a constant in space.
Second, even though the DAF approach has extremely
low storage requirements compared to other methods, as
the number of degrees of freedom rises, storage must be-
come a limiting factor for any method which propagates
wave packets directly since wave functions scale geome-
trically in terms of storage [25]. While not eliminating ei-
ther of the limitations noted above, we believe the extend-
ed DAF formalism presented here points the way to their
resolution. Specifically, as with previous work using the
stationary or traveling DAF, the global quadratic ap-
proximation in the harmonic DAF can instead by made
“local,” either by using more than one grid [11] or by
having each DAF incorporate the local potential through
quadratic order.

On multiple grids the full DAF propagator will not be
Toeplitz, and the DAF-convolution algorithm cannot be
applied; however, the propagator matrix will be com-
posed of Toeplitz submatrices corresponding to each grid
(with “boundary regions” mapping between them) for
which the DAF-convolution does hold. Thus, by using a
patchwork of several grids, each with a ‘“semilocal”
quadratic approximation to the potential, most of the
high-speed and low-storage advantages of the DAF con-
volution approach can be retained while still treating
much of the potential analytically through quadratic or-
der (although the issue of storing the wave function and
the propagator matrix for many degrees of freedom
remains).

Alternatively, one can imagine propagating each DAF
independently using parameters based on some local
quadratic approximation to the potential. While this re-
moves any possibility that the DAF propagator matrix
will be Toeplitz, it makes way for other savings which
may prove more important for large dimensional systems;
in particular, it (a) offers an appealing approach to nu-
merical path integration via importance sampling tech-
niques and (b) opens the way for using the DAF as a
“dynamical basis set” arrayed along the semiclassical tra-
jectory in phase space, with each DAF evolving exactly
under the local quadratic dynamics. Both of these ap-
proaches have shown significant promise in the past
[3-5] and thus, in a succeeding paper, we develop a col-
lection of local quadratic DAF propagators.
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